Подробности

    ЦифроМахЛогикаПриложения → Логика отношений

    Логика отношений

    логика это

    Логика отношений в свою очередь образует экстенсиональное дополнение к логике двух- и многоместных предикатов, точно так же, как логика классов является экстенсиональным дополнением к логике одноместных предикатов. Поскольку уже двухместные отношения (единственные разработанные на сегодня) имеют очень много особых свойств, логика отношений является самым большим разделом математической логики. Здесь мы можем указать лишь на некоторые основные понятия. Само отношение понимается экстенсионально, как пара предметов; оно (как и класс) определяется некоторым (двухместным) предикатом. Например, отношение любви - это множество пар людей, которые любят друг друга. В качестве символа здесь употребляются обычно "х R у". Каждое отношение имеет свое обратное (конверсию) (например, "больший чем" есть обратное к "меньший чем"). Выделяются различные относительные дескрипции (Kennzeichnungen): индивидуальные (супруг голландской королевы), множественные (составители "Британской энциклопедии"), двусторонне множественные (авторы итальянских стихов) и вообще так называемая предметная область (пишется "D, R", например, "авторы"). Еще важнее понятия, служащие для сцепления (Verkettung), так, прежде всего относительное произведение (квадрат половины, брат матери и т.д.) и связанная с ним относительная степень (отец отца это отец во второй степени). Еще одна группа понятий образуется свойствами отношений, из которых некоторые рефлексивны (т.е. у которых верно "х R х"), другие симметричны (если х R у, то и у R х), третьи транзитивны (если х R у и у R z, то х R z). Важнейшее из понятий, служащих для построения рядов, это понятие наследственного отношения (R или R2 или R3 и т.д.).



  • Логика высказываний

    Но если сначала подумали, что эти положения должны считаться ложными, то позже выяснилось, что речь идет лишь о другой интерпретации функторов и что аристотелевская логика, если ее понимать так, как понимал сам Аристотель, правильна

     
  • Источник: http://society.polbu.ru