Подробности

    ЦифроМахЛогикаПриложения → Семиотика

    Семиотика

    логика это

    С математической логикой тесно связана так называемая семиотика (Ч.Моррис), которая сегодня широко используется математическими логиками. Это теория символов и она делится на три части: 1) логический синтаксис - теория отношений символов друг к другу; 2) логическая семантика - теория отношений между символом и тем, что он обозначает; 3) логическая прагматика - теория отношений между символами, их значениями и употребляющими их людьми. Последняя еще только начинает разрабатываться, тогда как первые две представляют собой, особенно благодаря А.Тарскому и Р.Карнапу, хорошо разработанные дисциплины. Основная идея семиотики - это требование проводить четкое различие между символом и тем, что он означает. Поэтому, когда говорят о каком-нибудь слове, это слово должно получить особое именование. Например, когда говорят о слове "кошка", нельзя это делать тем же самым способом, каким мы пользуемся, говоря о живой кошке. Соответственно, следует четко различать язык S и метаязык языка S, каковой имеет своим предметом сам язык S. Так, существует, например, метаматематика (теория математического языка) и металогика (теория логического языка).

    Выяснилось, что формализованная аксиоматическая система всегда должна содержать и металогические элементы. Такая система состоит вообще из следующих элементов: 1) неопределяемые символы; 2) аксиомы, т.е. положения, принимаемые без доказательства; 3) правила формирования, определяющие, какие символы или группы символов (формулы) имеют смысл в системе; 4) правила вывода, позволяющие дедуцировать из аксиом новые предложения. Но третьи и четвертые элементы это не логические, а металогические формулы, так как они имеют дело с символами самой логики. Разумеется, такие предложения могут быть опять формализованы, но в этом случае придется употреблять мета-металогические предложения, так что в конечном итоге никакая система не может быть полностью формализована во всех своих составных частях.



  • Логика это

    Логика отношений в свою очередь образует экстенсиональное дополнение к логике двух- и многоместных предикатов, точно так же, как логика классов является экстенсиональным дополнением к логике одноместных предикатов

     
  • Источник: http://society.polbu.ru