Подробности

    ЦифроМахСобытия Математика → Огонь в уравнениях

    Огонь в уравнениях

    вселенная бесконечна

    Альфонс Мудрый, правивший Кастилией в XIII веке, глубоко уважал астрономию. На то имелись совершенно прагматические причины: знание точного положения планет на небе было жизненно необходимо для составления точных гороскопов. Для повышения их качества Альфонс заказал новые астрономические таблицы, основанные на теории Птолемея — последнем слове тогдашней космологии. Но когда ему объяснили тонкости птолемеевой системы, он отреагировал весьма скептически: "Если бы Всемогущий Бог посоветовался со мной перед творением, я бы порекомендовал что-нибудь попроще".

    Совет Альфонса

    Король Альфонс мог бы сказать то же самое и о той картине мира, которая говорит о существовании бесконечного ансамбля вселенных, каждая из которых пестрит областями с разной физикой элементарных частиц. Области, где могут жить разумные существа, редки и разделены громадными расстояниями. Еще реже встречаются области, совершенно идентичные между собой, но даже их существует бесконечное множество. Какое расточительство пространства, материи и вселенных!
    Однако нам не стоит слишком беспокоиться о количестве вселенных. Новая картина мира экономит куда более ценный товар: она значительно снижает число произвольных предположений, которые делаются о Вселенной. Лучшая теория — та, которая объясняет мир, опираясь на минимальные и простейшие предположения.
    Ранние космологические модели исходили из того, что Творец тщательно сконструировал и тонко настроил Вселенную. Каждая деталь в физике элементарных частиц, каждая фундаментальная постоянная и все первичные возмущения нужно было выставить строго определенным образом. Представьте только бесчисленные тома спецификаций, которые Творец вручал своим ассистентам для выполнения работы! Новая картина мира предлагает совершенно иной образ Творца. После некоторого раздумья он пришел к набору уравнений фундаментальной теории всей природы. Этим запускается процесс неудержимого творения. Никаких дальнейших инструкций не требуется: теория описывает квантовое зарождение вселенных из ничего, процесс вечной инфляции и создание областей со всеми возможными типами физики элементарных частиц — до бесконечности. Каждый конкретный элемент ансамбля вселенных невероятно сложен, и для его описания понадобилось бы огромное количество информации. Но весь ансамбль в целом можно закодировать относительно простым набором уравнений. (Подобная ситуация, когда бесконечный ансамбль оказывается много проще отдельного члена, очень часто встречается в математике. Рассмотрим, например, множество всех целых чисел: 1, 2, 3,... Его можно сгенерировать простой компьютерной программой, занимающей всего несколько строк. С другой стороны, число битов, необходимых для записи конкретного большого целого числа, равно количеству цифр в его двоичной записи и может оказаться гораздо больше.)


    Бог как математик.

    Как узнать, что наш портрет Творца близок к истине? Пытался ли он оптимизировать использование "ресурсов", таких как пространство и материя, или больше заботился о сжатости математического описания природы? К сожалению, он не дает интервью, но продукт его работы — Вселенная — не оставляет сомнений на этот счет.
    Поверхностного взгляда на Вселенную достаточно, чтобы убедиться, с какой великой расточительностью растрачивались материя и пространство. Бесчисленные галактики разбросаны в пустом космосе на колоссальных расстояниях друг от друга. Галактики делятся на несколько типов, среди которых спиральные и эллиптические, карликовые и гигантские. Но за исключением этого все они очень похожи друг на друга. Творец ясно дает понять, что не стесняется бесконечно повторять свои работы.

    Пифагор в VI веке до нашей эры, вероятно, впервые предположил, что математические соотношения лежат в основе всех физических явлений. Его догадка была подтверждена веками научных исследований, и теперь мы считаем само собой разумеющимся, что природа подчиняется математическим законам. Но если остановиться и задуматься, то тот факт выглядит крайне странным.
    Математика кажется продуктом чистого мышления, очень слабо связанным с опытом. Но почему же тогда она так идеально подходит для описания физической Вселенной? Это именно то, что физик Юджин Вигнер называл "непостижимой эффективностью математики в естественных науках". Рассмотрим в качестве простого примера эллипс. Он был известен древним грекам как кривая, которая получается при разрезании конуса плоскостью под определенным углом. Архимед и другие греческие математики изучали свойства эллипса просто из интереса к геометрии. Затем, более 2000 лет спустя, Иоганн Кеплер открыл, что планеты в своем движении вокруг Солнца с высокой точностью описывают эллипсы. Но что общего у движений Марса и Венеры с коническими сечениями?
    Ближе к нашему времени, в 1960-х годах, математик Виктор Кац (Victor Кас) исследовал класс замысловатых математических структур, известных как алгебры Каца-Муди. Единственной мотивом для этого был его нюх, который подсказывал: эти структуры пахнут чем-то интересным и могут привести к красивым математическим результатам. Никто не мот предсказать, что через пару десятилетий эти алгебры станут играть ключевую роль в теории струн.
    Эти примеры не являются исключениями. Чаще случается именно так, а не наоборот: физики обнаруживают, что математические построения, необходимые им для описания нового класса явления, уже исследованы математиками по причинам, не имеющим ничего общего с обсуждаемыми явлениями. Похоже, что Творцу присуще математическое чувство красоты. Многие физики, полагаясь на эту его черту, используют математическую красоту в качестве путеводной нити в поисках новых теорий. Согласно Полю Дираку, одному из основоположников квантовой механики, "красота уравнений важнее их соответствия эксперименту, потому что расхождения могут быть вызваны второстепенными причинами, которые прояснятся по мере развития теории".
    Математическую красоту определить ничуть не проще, чем в красоту в искусстве. Примером того, что математики считают красивым, может служить формула Эйлера: еiπ+1=0. Один из критериев красоты — это простота, но одной простоты недостаточно. Формула 1+1=2 проста, но не особо красива, поскольку тривиальна. Напротив, формула Эйлера демонстрирует весьма неожиданную связь между тремя, казалось бы, независимыми числами: числом е, известным как основание натуральных логарифмов, "мнимым" числом i — квадратным корнем из -1 и числом π — отношением длины окружности к ее диаметру. Это свойство можно назвать глубиной. Красивая математика соединяет простоту и глубину.
    Если и в самом деле Творец имеет математический склад ума, тогда уравнения окончательной Теории Всего должны быть поразительно простыми и невероятно глубокими. Некоторые считают, что эта окончательная теория есть теория струн, которую мы сейчас открываем. Безусловно, она очень глубока. Простой ее не назовешь, но простота может проявиться, когда теория будет лучше понята.

    Математическая демократия

    Если мы когда-нибудь откроем окончательную Теорию Всего, останется вопрос: почему именно эта теория? Математическая красота может быть полезна как путеводная нить, но трудно себе представить, что ее достаточно для выбора единственной теории из бесконечного множества возможностей. Говоря словами физика Макса Тегмарка, "почему одна, и только одна, математическая структура должна быть наделена физическим существованием?" Тегмарк, работающий ныне в Массачусетсом технологическом институте, предложил путь для выхода из этого тупика.
    Его предложение столь же простое, сколь и радикальное: он отстаивает идею, что для любой и каждой математической структуры должна существовать отвечающая ей вселенная. Существует, например, ньютоновская вселенная, подчиняющаяся законам евклидовой геометрии, классической механики и теории гравитации Ньютона. Есть также вселенные, в которых пространство имеет бесконечное число измерений, и другие — с двумя измерениями времени. Еще труднее представить себе вселенную, управляемую алгеброй кватернионов, не имеющую ни пространства, ни времени.
    Тегмарк утверждает, что все эти вселенные существуют "где-то". Мы не знаем о них точно так же, как не знаем о других вселенных, зарождающихся из ничего. Математические структуры в некоторых из этих вселенных достаточно изощренны, чтобы допустить возникновение "самосознающих подструктур", подобных вам и мне. Такие вселенные редки, но, конечно, только они могут быть наблюдаемы.
    У нас нет фактов в поддержку столь радикального расширения реальности. Единственная причина повышать статус вселенных с другими математическими структурами до реального существования — это обход необходимости объяснять, почему они не существуют. Возможно, это удовлетворило бы некоторых философов, но физикам нужно что-то более существенное. В духе принципа заурядности можно было бы попробовать показать, что фундаментальная теория нашей Вселенной — в некотором роде типичная среди всех теорий, достаточно богатых, чтобы содержать наблюдателей. Это могло бы поддержать расширенный мультиверс Тегмарка.
    Предложение Тегмарка сталкивается, однако, с очень серьезной проблемой. Число математических структур увеличивается с ростом сложности, а значит, "типичная" структура должна ужасать своей тяжеловесностью и громоздкостью. Очевидно, это противоречит простоте и красоте теорий, описывающих мир.



  • Оренбуржец в числе призеров математической олимпиады

    Студентам были предложены 10 задач из различных разделов математики: математического анализа, алгебры, аналитической геометрии, теории вероятностей, дискретной математики

     
  • Источник: http://oko-planet.su